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A B S T R A C T

Studying parasites of the genus Trichinella provides scientists of today many advantages. This is a group

of zoonotic nematodes that circulates freely among wildlife hosts with one in particular, Trichinella

spiralis that is exceptionally well adapted to domestic swine. Recent reports suggest that human

infections from hunted animals are on the rise worldwide and numerous countries still experience

problems with T. spiralis in their domestic food supplies. Trichinella is a genus whose members are easily

propagated in the laboratories, have been used as models to investigate host–parasite relationships and

parasitism among clade I organisms, and represent a poorly investigated link between the phylum

Nematoda and other Metazoans. The importance of T. spiralis in better understanding the tree of life was

so recognized that in 2004, its genome was carefully selected as one of only nine key non-mammalian

organisms to be sequenced to completion. Since it was first discovered in 1835, this genus has expanded

from being monospecific to eight species including four other genotypes of undetermined taxonomic

rank. Inasmuch as discriminating morphological data have been scant, our understanding of the genus

has been relegated to a compilation of molecular, biochemical and biological data. Herein, we provide a

collection of information and up-to-date interpretations on the taxonomy, diagnostics, systematics,

micro- and macroevolution, and the biogeographical and biohistorical reconstruction of the genus

Trichinella.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Worms belonging to the genus Trichinella are unique among
zoonotic nematodes. They are characterised by two generations in
the same host and by infective first stage larvae (L1) rather than
infective third stage larvae (L3) which typify most other nematode
species (Pozio, 2007a). The only means of transmission is through
the ingestion of infected, striated muscle tissue. The natural
reservoirs of Trichinella species are wild carnivorous and omnivor-
ous animals (Pozio, 2005). When humans fail to properly manage
food animals or control the interface between wild and domestic
animals, transmission of some species (i.e., Trichinella spiralis, T.

britovi and T. pseudospiralis) can occur between these habitats. This
transmission pattern inevitably involves pigs (Pozio and Murrell,
2006). Once an infection occurs in a population of domestic pigs, it
can be perpetuated for many years within the neighbouring
environment because of the scavenging and eating habits of these
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animals. This problem is exacerbated when scraps from ‘‘home
slaughtered’’, infected pigs are scattered in local surroundings.

Trichinella parasites, which are widespread in all continents but
Antarctica, are the etiological agents of a human disease, named
trichinellosis (formerly known as trichiniasis or trichinosis), which
can cause death in severe cases (Dupouy-Camet et al., 2002; Pozio
and Murrell, 2006). If one considers all countries of the world,
Trichinella spp. infections in domestic animals (mainly pigs) have
been documented in 43 (21.9%) countries, whereas infections in
wildlife have been documented in 66 (33.3%) countries (Pozio,
2007b). Human trichinellosis has been reported in 55 (27.8%)
countries worldwide; however, the presence of Trichinella in wild
and/or domestic animals is not always linked to human infection.
Eating habits of the hosts play important roles in transmission
(Pozio, 2007b). Given the ability of this parasite to infect nearly all
mammals, its cosmopolitan distribution, and its ability to appear in
the domestic food supply, it is important to understand the many
species that make up this genus. In addition, having an
appreciation for the biogeography and species level diversity
among these parasites will provide a foundation for more detailed
studies of population structure relevant to patterns of geographic
and host distribution, and the future threat of human trichinellosis.

mailto:edoardo.pozio@iss.it
http://www.sciencedirect.com/science/journal/15671348
http://dx.doi.org/10.1016/j.meegid.2009.03.003
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2. Phylogeny and taxonomy

2.1. Trichinella and its historical context within Nematoda

Recent history depicts the phylum Nematoda being separated
into two classes, the Adenophorea and Secernentea predominantly
based upon morphological and some molecular characters (Mag-
genti, 1983). Classically, the genus Trichinella has been grouped with
the Adenophorea; however, more recent molecular data have begun
to question this classification scheme (Blaxter et al., 1998). In 1998,
Blaxter et al. re-evaluated hierarchical relationships among
terrestrial and economically-important nematodes predicated on
small subunit ribosomal DNA (ssu rDNA) sequence data. They
concluded that the prior separation of Adenophorea and Secernen-
tea was insufficiently descriptive and did not adequately represent
the high frequency of homoplasy relative to parasitism and other
independently evolved biological characters. The studies of Voronov
et al. (1998) mirrored these findings where they reported distinct
patterns of embryonic development that were in good agreement
with the divisions proposed by Blaxter et al. (1998). In this
classification scheme, the genus Trichinella was partitioned with
clade I plant, insect, and marine parasites along with some free-
living nematodes. De Ley and Blaxter (2002) updated this phylogeny
with morphological information to assist classification of organisms
for which ssu rRNA information was not available. Holterman et al.
(2006) performed more robust studies and concluded that the
phylum would be best served if divided into 12 rather than five
different clades as proposed by Blaxter et al. (1998). Most recently,
Meldal et al. (2007) revised this phylogeny by including a large
number of marine taxa that were severely underrepresented in
previous analyses. They concluded that resolution at the base of the
phylum was not sufficiently adequate to shed light on a marine
ancestry for the group.

Data have recently surfaced suggesting that Trichinellidae and
Trichuridae diverged from a common ancestor 250–300 million
years ago (Ma) (Zarlenga et al., 2006). Estimates for the divergence
of lineages leading to Caenorhabditis and Trichinella have been as
high as 600 Ma (Mitreva and Jasmer, 2006). Research performed by
Parkinson et al. (2004) and more recently by Mitreva et al. (2004,
2005) indicated as much similarity (45–50%) between T. spiralis

(clade I) and Caenorhabditis elegans (clade V) as that shared
between T. spiralis and the arthropod, Drosophila melanogaster

based upon predicted consensus sequences from expressed-
sequence tag (EST) clusters. This level of similarity is more related
to sequence conservation within the broader context of metazoan
evolution but clearly demonstrates the great genetic diversity
among organisms in the phylum Nematoda. This finding was
mirrored in the mtDNA sequence of T. spiralis which in many
aspects was more similar to non-nematode metazoans than to
nematodes or was intermediate between these groups (Lavrov and
Brown, 2001).
Table 1
The taxonomy of the Trichinella genus from the parasite discovery to today.

Year Genus and species Identification based on

1835 Trichina spiralis Morphology

1892 Trichinella spiralis Not applicable

1972 Trichinella nativa, T. nelsoni Cross-breeding, epidemiolo

1972 T. pseudospiralis Biology, morphology

1992 T. britovi, T. nelsoni s.s.,

Trichinella T5, T6, and T8

Allozymes, biology, epidem

1999 T. papuae Allozymes, molecular mark

1999 Trichinella T9 Molecular markers

2000 T. murrelli Cross-breeding, biology, zo

2002 T. zimbabwensis Allozymes, molecular mark

epidemiology, zoogeograph

2008 Trichinella T12 Molecular markers, epidem
2.2. Trichinella phylogeny and taxonomic structure: the earlier years

For nearly 150 years following the 19th century discovery of T.

spiralis (Owen, 1835), the genus was considered to be mono-
specific (Table 1) (e.g., Pozio and Zarlenga, 2005). With the
characterization of a handful of unique Trichinella isolates 30–35
years ago, the taxonomy of this genus became controversial
(Pozio et al., 1992). Recent molecular epidemiological studies
have served to validate the contributions of earlier work based on
epidemiology (Rausch et al., 1956; Nelson, 1970; Rausch, 1970),
cross-breeding (Britov and Boev, 1972), and biology and
morphology (Garkavi, 1972). Thus, by the early 1970s, biological
data had suggested that the genus comprised a complex of
largely cryptic parasite species even though morphological
characters among the group were equivocal (Lichtenfels et al.,
1983). Indeed, the most telling character, the presence or absence
of a host-derived, collagen sheath around the infected muscle cell
led to the conclusion that the genus could be biologically
delineated into 2 distinct groups: the encapsulated and non-
encapsulated clades (Zarlenga et al., 2006). These groups
received heightened interest from the genome sequencing
community and in 2004, a major effort was launched to sequence
the complete genome of T. spiralis as a representative clade 1,
encapsulated nematode (Mitreva and Jasmer, 2008). Genome
sequencing efforts have since expanded to include the non-
encapsulated species, T. pseudospiralis, using ‘‘next generation’’
sequencing technologies (Zarlenga et al., 2009) and T. spiralis

data for comparative sequence assignment.
Better resolution of taxonomic issues has occurred only in the

last 25 years, facilitated by the adoption of biochemical and
molecular techniques (Flockhart et al., 1982; Mydynski and Dick,
1985; Fukumoto et al., 1987, 1988; Murrell et al., 1987; Pozio,
1987; La Rosa et al., 1992) which have been improved for both
sensitivity and specificity (Chambers et al., 1986; Dame et al.,
1987; Zarlenga and Barta, 1990; Zarlenga and Dame, 1992). Among
the earliest dendrograms were those based upon distance
algorithms of allozyme data from more than 150 field isolates
obtained from different hosts and geographical origins (La Rosa
et al., 1992). In their simplest forms, these trees biochemically
delineated encapsulated and non-encapsulated species but
broadly grouped the encapsulated genotypes with variable levels
of resolution. Within this context, the allozyme data supported
recognition of five species (T. spiralis, T. nativa, T. britovi, T.

pseudospiralis, and T. nelsoni) and three additional genotypes
(Trichinella T5, T6, and T8) whose taxonomic rank was unresolved
(La Rosa et al., 1992; Pozio et al., 1992). This proposal constitutes
the current paradigm where modification has resulted only from
the addition of new species and genotypes (Tables 1 and 2) (Pozio
and Zarlenga, 2005; Krivokapich et al., 2008).

The use of polymerase chain reaction (PCR)-derived methods
has been instrumental in identifying Trichinella isolates and has
Reference

Owen, 1835

Railliet, 1896

gy, zoogeography Britov and Boev, 1972

Garkavi, 1972

iology, zoogeography Pozio et al., 1992

ers, biology, epidemiology, zoogeography Pozio et al., 1999a

Nagano et al., 1999

ogeography Pozio and La Rosa, 2000

ers, biology, cross-Breeding,

y

Pozio et al., 2002

iology, zoogeography Krivokapich et al., 2008



Table 2
Principal features of Trichinella species and genotypes and amplicon sizes by multiplex PCR (Pozio et al., 1999a,b, 2002; Zarlenga et al., 1999; Krivokapich et al., 2008) or PCR-

RFLP (Nagano et al., 1999).

Trichinella species

or genotype

Distribution Cycle Natural hosts Amplicon size by

multiplex PCR

Amplicon size by

PCR-RFLP (Mse I)

Encapsulated

T. spiralis Cosmopolitana Domestic and sylvatic Swine, rats, seldom carnivores 173 bp 22, 70, 126, 201 bp

T. nativa Arctic and subarctic areas of

Holoarctic regionb

Sylvatic Terrestrial and marine carnivores 127 bp 22, 70, 327 bp

Trichinella T6 Canada and United States Sylvatic Carnivores 127, 210 bp 22, 70, 327 bp

T. britovi Temperate areas of Palearctic

regionc,

northern and western Africa

Sylvatic, seldom domestic Carnivores, seldom swine 127, 253 bp 22, 62, 64, 70, 201 bp

Trichinella T8 South Africa and Namibia Sylvatic Carnivores 127, 253 bp 22, 62, 64, 70, 201 bp

T. murrelli Temperate areas of Nearctic

region

Sylvatic Carnivores 127, 316 bp 92, 126, 201 bp

Trichinella T9 Japan Sylvatic Carnivores 127, 253 bp 92, 327 bp

T. nelsoni Ethiopic region Sylvatic Carnivores, seldom swine 127, 404 bp 62, 64, 70, 223 bp

Trichinella T12 Argentina Sylvatic Carnivores 127 bp unknown

Non-encapsulated

T. pseudospiralis Cosmopolitan Sylvatic, seldom domestic Mammals and birds 310d, 340e, 360f bp 419 bpd unknowne,f

T. papuae Papua New Guinea, Thailand Sylvatic, seldom domestic Swine, saltwater crocodiles 240 bp Unknown

T. zimbabwensis Ethiopia, Mozambique,

South Africa, Zimbabwe

Sylvatic and domestic Nile crocodiles, Nile monitor

lizards, lion

264 bp Unknown

a This species has not been detected in arctic regions.
b The isotherm �4 8C in January is the southern limit of distribution.
c The isotherm �6 8C in January is the northern limit of distribution.
d Palearctic region.
e Nearctic region.
f Australian (Tasmania) region.
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confirmed the taxonomy of the genus (Dick et al., 1992; Soule et al.,
1993; Bandi et al., 1993, 1995; Wang et al., 1995; Gasser et al.,
1998, 2004; Wu et al., 1998, 1999, 2000; Appleyard et al., 1999;
Nagano et al., 1999; Zarlenga et al., 1999; Rombout et al., 2001;
Pozio and La Rosa, 2003). Although PCR greatly advanced the
identification of Trichinella species, its use in reconstructing the
phylogeny was equivocal in earlier years. This lack of resolution
was compounded by the use of random amplified polymorphic
DNA (RAPD) data and inconsistencies in scoring the banding
patterns. It became apparent that RAPD-based PCR profiles, and
therefore the trees which resulted were often too subjective and
heavily dependent upon the quality of the DNA. DNA integrity was
frequently questionable when material was obtained from low
numbers of parasites or from ethanol preserved specimens (Pozio
et al., 1999b). By the late 1990s and the years that followed, the
phylogeny became more solidified. Bandi et al. (1995), Zarlenga
(1998) and La Rosa et al. (2003b) each used distinct methods to
generate Unweighted Pair Group Method with Arithmetic mean
(UPGMA)-based trees with better though not complete congru-
ence. Discrepancies among the trees were rooted in the amount of
sampling and in the characteristics of the different datasets.
Nonetheless, certain incontrovertible facts became obvious; (1)
both biological and genetic data partitioned the genus into two
clades that coincided with capsule formation; (2) the non-
encapsulated clade (e.g., T. pseudospiralis) was placed at the base
of the tree, and; (3) the encapsulated clade was rooted with T.

spiralis or T. nelsoni, relative to the freeze tolerant genotypes, T.

nativa and Trichinella T6. Gasser et al. (2004) evaluated the genus
using sequence information from the D3 domain of the nuclear
ribosomal DNA which corroborated these conclusions but raised
questions as to the relationships of T. britovi, T. murrelli and several
other genotypes within the encapsulated clade, namely Trichinella

T8 and T9. Later, van der Giessen et al. (2005) evaluated the 5S
rRNA and came to similar conclusions; however, congruence
among Palearctic and Nearctic genotypes remained equivocal and
discrepancies continued over which species best rooted the
encapsulated clade.
2.3. Trichinella phylogeny and taxonomic structure: current dogma

In 2006 and 2008, phylogenetic resolution using a multi-gene
sequencing effort unequivocally established monophyly for the
genus and validated eight nominal species and four species-level
genotypes including the newly discovered, Trichinella T12 (Zar-
lenga et al., 2006; Krivokapich et al., 2008) (Fig. 1). On the basis of
the variation in mitochondrial (mt) large subunit rRNA (lsu rRNA),
the cytochrome c-oxidase subunit I (COI) DNA and rRNA internal
transcribed sequences (ITS), two clades once again emerged
coinciding with biological and isoenzyme data (See sections 2.1
and 2.2). Subsequent studies using a multi-gene analysis [5S
intergeneric spacer region, lsu rDNA expansion segment V (ESV),
and COI], corroborated this tree topology in the process of
characterizing the new genotype, Trichinella T12 (Krivokapich
et al., 2008). In both of these multi-gene analyses, T. spiralis was
consistently placed as the basal taxon among the encapsulated
forms. Among the non-encapsulated genotypes, those parasites
infecting mammals and reptiles were partitioned from those
infecting mammals and birds.

Molecular-based characterization resulting in accurate diag-
nostics, followed by phylogenetic resolution among the geno-
types (Zarlenga et al., 2006; Krivokapich et al., 2008) have allowed
reliable recognition and definition of species-limits. This per-
mitted the creation of an historical phylogenetic basis for each
species. The availability of an historical phylogenetic backbone for
species level diversity has provided a foundation to explore
population structure relevant to: (1) understanding the drivers for
contemporary patterns of geographic and host distribution; (2)
faunal structure in space and time; and (3) the processes
associated with maintenance and emergence of Trichinella

infections in humans and food animals (Rosenthal et al., 2008;
Hoberg and Brooks, 2008). Furthermore, a comparative frame-
work now exists (Brooks and McLennan, 2002) against which
continued exploration and discovery of previously unrecognized
diversity can be assessed. These issues are addressed in the
section to follow.



Fig. 1. Phylogenetic hypothesis for of the genus Trichinella. This phylogeny represents a composite or supertree assembled from two independent and multigene analyses for

parasites of the genus (Zarlenga et al., 2006; Krivokapich et al., 2008). Monophyly was established in each analysis and a separation of encapsulated and non-encapsulated

taxa is consistently supported. Primary relationships among all forms are derived from Zarlenga et al. (2006) with the mapping of Trichinella T12 onto this tree based upon

data from Krivokapich et al. (2008). Topological support for the base tree is indicated by Baysian posterior probabilities, maximum likelihood, minimum evolution (using

maximum likelihood distances), and parsimony bootstrap replicate analyses (B/ML/ME/P) (Zarlenga et al., 2006). Optimization of molecular data from Trichinella T12

represents bootstrap values for 5S intergenic spacer region sequences. Posterior probabilities obtained with the Bayesian analyses are indicated in brackets. Taxon labels are

consistent with these analyses and with the text. Bars indicate base substitutions per site.
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3. Biogeography and host associations

The lineage representing Trichinella is archaic and estimates for
divergence from a common ancestor for Trichuridae and Trichi-
nellidae, based on a molecular clock, extend to the late Paleozoic or
early Mesozoic, 250–300 Ma (Zarlenga et al., 2006). The appear-
ance of extant species and genotypes is linked to events in the late
Tertiary and appears associated with Eutherian mammals (Zar-
lenga et al., 2006). An exploration of host and geographic
associations relative to phylogenetic hypotheses (Fig. 2) reveals:
(1) the separation between Trichinellidae and the putative sister-
group Trichuridae may coincide with initial diversification of
terrestrial tetrapods (Zarlenga et al., 2006, 2009); (2) contempor-
ary fauna initially diversified in Eurasia followed by relatively
recent (20–30 Ma) basal divergence between the encapsulated and
non-encapsulated clades; (3) each clade contains species that are
geographically and ecologically restricted, and only two species
have cosmopolitan distributions due to the spread by birds (T.

pseudospiralis) or by anthropogenic activity (T. spiralis) (La Rosa
et al., 2003b; Rosenthal et al., 2008); (4) diversification is
associated with episodes of biotic expansion at intercontinental
scales in the context of dynamic trophic linkages within foraging
guilds (Hoberg and Brooks, 2008); and (5) subsequent isolation
with carnivoran hosts occurred within specific time frames in the
Miocene, Pliocene and Quaternary.

Alternating episodes of geographic expansion and isolation for
faunas on varying temporal and spatial scales, as well as ecological
fitting (a determinant of host switching) are postulated in the
historical biogeography and diversification of carnivorans and
omnivorous mammalian hosts and their parasites (Halas et al.,
2005; Folinsbee and Brooks, 2007; Agosta and Klemens, 2008;
Hoberg and Brooks, 2008). Yet, there is minimal evidence for a
history of cospeciation for Trichinella among eutherians. This is
consistent with host colonization rather than coevolution as a
major driver for diversification in lineages involving complex host–
parasite associations.

3.1. Trichinella species/genotypes and their associated hosts

Diversification for Trichinella can be linked to radiation of an
ancestral assemblage of omnivores, carnivores and scavengers that
constitute the range of contemporary hosts (Murrell et al., 2000;
Kapel, 2000). Patterns of persistence, host association and
diversification differ considerably among the 2 clades of Trichinella.
Non-encapsulated forms appear to be relicts of a basal diversifica-
tion in the Oligocene to Miocene followed by independent and
secondary colonization among Eutheria, Metatheria, Aves, Squa-
mata and Crocodilia. These non-encapsulated genotypes also
retained plesiomorphic attributes for broad infectivity of tetrapods
(e.g., Pozio et al., 2004). Encapsulated forms, on the other hand,
radiated through host-switching within guild assemblages among
Mustelidae, Ursidae, Canidae, Felidae and Hyaenidae in specific
regional/continental settings. This radiation coincided with faunal
expansion and geographic isolation during climatological and
ecological perturbations in the Miocene, late Pliocene and
Pleistocene (Zarlenga et al., 2006; Hoberg and Brooks, 2008)
(Fig. 2). Carnivorans including felids, hyaenids and viverrids
(Feloidea), canids, ursids, mustelids (Arctoidea), and omnivores
including Suidae radiated in Eurasia. These host groups have a
history of differential arrival and temporal durations in Africa, the
Nearctic and the Neotropics ranging from the lower Miocene to the
Quaternary (e.g., Cooke and Wilkinson, 1978; Savage, 1978; Briggs,
1995; Johnson et al., 2006; Folinsbee and Brooks, 2007).

Encapsulated species of Trichinella principally represent a
Eurasian/African group with secondary connections to the Holarctic
and Neotropical faunas (Fig. 2). Ecological transitions from omnivory
to facultative and obligate carnivory among mammalian hosts are
recognized in the transmission dynamics of T. spiralis, T. nelsoni and
the crown species of encapsulated Trichinella, respectively; the later
is represented predominantly among arctoid carnivorans. Based on
the distribution of genetic diversity, the origins for T. spiralis and the
encapsulated clade are postulated in central Eurasia (Zarlenga et al.,
2006). Global translocation of infected domesticated mammals, only
recently perpetuated T. spiralis through a largely synanthropic cycle
involving swine and possibly rats (Rosenthal et al., 2008).

Expansion of Trichinella from Eurasia to Africa is consistent with
the history of carnivore and omnivore hosts (Cooke and Wilkinson,
1978; Savage, 1978; Folinsbee and Brooks, 2007). Three indepen-
dent events are recognized (Fig. 2) and account for T. nelsoni,
Trichinella T8, and the more contemporary distribution of T. britovi

in north-western Africa (Pozio et al., 2005a; Pozio and Murrell,
2006). Trichinella nelsoni, which is confined to sub-Saharan Africa,



Fig. 2. History for species of Trichinella focusing on biogeography and estimates for minimum divergence time among members of the encapsulated clade. The composite tree

is based on: (1) species-level relationships revealed in analyses of multi-gene datasets by Zarlenga et al. (2006); (2) placement of the recently recognized Trichinella T12 by

Krivokapich et al. (2008), and (3) recognition of geographic partitions in T. pseudospiralis (T4) by (Wu et al., 2007). Patterns of geographic distributions are mapped and

optimized onto this phylogenetic tree. Divergence estimates at nodes expressed as Ma (million years ago) or Ka (thousand years ago) are based on molecular clocks and

biogeographic calibrations consistent with Zarlenga et al. (2006). The encapsulated clade has a postulated origin in the Central Asian Palearctic, and there is a pervasive

history for geographic colonization as a driver for diversification over 20–30 millions years. Independent expansion events and subsequent isolation for faunal assemblages

(carnivoran and carnivorous/ominovous/scavenging hosts and parasites) has structured diversity for Trichinella in Africa, the Nearctic and Neotropical regions. Biogeography

and divergence estimates among the non-encapsulated clade remain unresolved, and reflect a paucity of sampling of this parasite group. The placement of Trichinella T12 does

not conform to the recent expansion through Beringia and as such appears outside the ‘‘Beringian loop’’. With Trichinella T12 being represented by two isolates only, it remains

unclear as to how it first arrived in South America. T1 = T. spiralis; T2 = T. nativa; T3 = T. britovi; T4 = T. pseudospiralis; T5 = T. murrelli; T7 = T. nelsoni; T10 = T. papuae; T11 = T.

zimbabwensis; T6, T8, T9 and T12 represent unnamed Trichinella genotypes currently designated by numbers only.
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mainly circulates among felids, and hyaenids (Pozio et al., 1997b;
Marucci et al., 2009).

Area relationships indicate that biotic expansion with primary
carnivore host groups occurred first across Eurasia into Western
Europe (T. britovi) (>6.5 Ma), and then across Beringia into North
America (<3.0 Ma) (Fig. 2). This is compatible with a shallow
history for extant species of Trichinella in the Nearctic and across
the Holarctic. Recent divergence among Nearctic species of
Trichinella is consistent with the minimal genetic variation among
T. murrelli (temperate Nearctic), Trichinella T9 (Japan), T. nativa

(high latitude Holarctic) and Trichinella T6 (SubArctic Nearctic)
(Zarlenga et al., 2006). Trichinella britovi has a continuous
distribution across the Palearctic (Pozio and Murrell, 2006) and
is represented by expansion into northern and western Africa in
the late Pleistocene (Pozio et al., 2005a). Radiation among crown
species was associated with independent events of expansion
across Beringia during the Pleistocene. This radiation was
temporally decoupled, and coincided with a narrowing of the
host range to primarily arctoid carnivorans, and the development
of a freeze-resistant phenotype in the crown species.

Separation of the South America from Africa began about 150
million years ago; however, the infiltration of the sea between the
two continents was intermittent up until about 92 million years ago
when the land masses finally separated. The recently discovered
Trichinella T12 in Patagonia may represent the outcome of expansion
of Eurasian felids through the Nearctic into the Neotropical region
after 8 Ma and suggests that this parasite circulates primarily in
felids and canids (Johnson et al., 2006; Krivokapich et al., 2008).
Although procyonids, canids, and mustelids underwent range
expansion and extensive radiation following emergence of the
Panamanian Isthmus and faunal interchange during the Pliocene/
Pleistocene 3.0 Ma (Marshall et al., 1982), to date, pre-existing
associations with Trichinella have not yet been identified.

Recent expansion of extant genotypes through North America
and into South America may have been followed by some level of
extinction in the northern territories. Ecological conditions in
South America were apparently not conducive to establishment
and transmission of sylvatic Trichinella among northern eutherian
carnivores and southern marsupials. Among sylvatic Trichinella

with adaptations for survival in harsh, cold, and xeric environ-
ments, historical constraints and canalization with respect to life
history may have constituted limitations on range expansion into
the Neotropics where the Panamanian Isthmus represented a
tropical filter bridge for the northern fauna in the late Tertiary.
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Thus, it is interesting that Trichinella T12 has affinities directly to
Eurasia rather than to the Nearctic (Fig. 2), and suggests expansion
across Beringia during times of relatively mild climate prior to the
late Pliocene and Quaternary. Clearly there are biogeographical
concepts which remain unresolved; however, an understanding of
macroevolutionary processes for the diversification, ecological
structure and biogeography of Trichinella provides the framework
to explore microevolutionary hypotheses linking regional faunas
and events in ecological time and at fine spatial scales (Hoberg and
Brooks, 2008).

4. The International Trichinella Reference Centre and species
identification

Comparative studies within Trichinella have only been possible
through the development and maintenance of archival collections
which are the foundations for studies in biodiversity (e.g., Hoberg,
2002). A major resource that has provided vital parasite material
and information for these studies is the International Trichinella

Reference Centre (ITRC; www.iss.it/site/Trichinella/index.asp).
This centre was established in 1988 and has become the official
reference laboratory of both the International Commission on
Trichinellosis (since 1988; www.med.unipi.it/ict/welcome.htm)
and the World Organization for Animal Health (since 1992;
www.oie.int/eng/en_index.htm). The ITRC was created as a
repository for Trichinella strains and as a source of materials and
information for international research and diagnosis of Trichinella

isolates (Pozio et al., 1989, 2001). Today, the ITRC contains data on
more than 2300 isolates from around the world. In addition to
molecular typing, information on each isolate includes their host
species, geographical origin, and other epidemiological informa-
tion. More than 80 isolates are continually maintained in vivo. The
predominant modes of identification involve multiplex PCR
(Zarlenga et al., 1999; Pozio and La Rosa, 2003) and when
necessary, DNA sequencing. Multiplex PCR is based upon
concurrent amplification of expansion segment V from the lsu
rRNA gene for all Trichinella genotypes along with specific primers
from the ITS1 and ITS2 that are diagnostic for individual taxon.
Unique agarose gel banding profiles are generated from a mixture
of 5 different primer pairs. That which follows is a compilation of
multiplex PCR, biological and biochemical information available
through the ITRC for each specie and genotype of Trichinella

presented according to their classification within the encapsulated
and non-encapsulated clades.

4.1. The encapsulated clade

Today, five species and four genotypes are recognized in this
clade (Table 2).

4.1.1. Trichinella spiralis

Trichinella spiralis was the first discovered species and remains
today the cause of most infections in domestic animals (pigs and
horses) and humans. Worldwide, this species has been detected in
36 countries spanning all continents (Pozio, 2007b). Most
Trichinella infections in humans are caused by this species which
can also induce death (Dupouy-Camet et al., 2002). By multiplex
PCR, parasites of this species display a single band of 173 bp from
the ESV (Zarlenga et al., 1999). Although this parasite can develop
in many mammalian species belonging to different families, the
main reservoir is represented by domestic and sylvatic swine
within which the parasite can attain very high worm burdens
(more than 3000 larvae/g) without any adverse physiological
effects, suggesting a very good host–parasite relationship (Kapel
and Gamble, 2000; Kapel, 2001). This species is the most important
etiological agent of the domestic cycle and it occurs with high
prevalence in areas with limited or no veterinary control at the
slaughterhouses, and where free-ranging and backyard pigs are
slaughtered in the absence of veterinary controls. In regions or
countries where this parasite was at one time common within the
domestic cycle (e.g., Germany, Poland, Spain), high prevalence
rates can still be detected in wild boars (Pozio et al., 2009). In
Europe, T. spiralis has been discovered in 82%, 62%, 82% and 11% of
Trichinella-infected domestic pigs, wild boars, synanthropic brown
rats and sylvatic carnivores, respectively (Pozio et al., 2009). In
America, T. spiralis was identified as the etiologic agent in all but
one of the 50 isolates originating from swine (domestic and
sylvatic). In addition, T. spiralis has been found in 10 carnivores (i.e.,
bears, bobcat, coyote, feral cat, red fox and mountain lion)
accounting for 19% of Trichinella-infected carnivores, and in 5
synanthropic animals (armadillos and brown rats) captured near T.

spiralis-infected pig farms (www.iss.it/site/Trichinella/index.asp).
The ability to perform PCR on single larvae (up to 1/10 of a larva; La
Rosa G. unpublished information) has allowed the identification of
mixed infections in animals from regions where T. spiralis lives in
sympatry with T. nativa, T. britovi, T. murrelli or T. pseudospiralis

(www.iss.it/site/Trichinella/index.asp). This has advanced our
understanding of the potential for gene flow between sympatric
species and genotypes (Pozio et al., 1995, 1997a; Oivanen et al.,
2002; La Rosa et al., 2003a; Malakauskas et al., 2007).

4.1.2. Trichinella nativa

This species infects predominantly wild carnivore mammals of
the families Canidae, Felidae, Mustelidae, Ursidae, Odobenidae,
and very rarely Phocidae, living in arctic and subarctic areas of the
Holarctic region. The southern distribution boundary has been
tentatively identified between the isotherms �5 and �4 8C in
January (Pozio and Zarlenga, 2005). Infections in humans have
been documented for the consumption of game meat (e.g., bears
and walruses). Experimental infections have shown that few T.

nativa larvae can develop to L1 in swine muscles and those that
develop are rapidly (within 10 weeks p.i.) destroyed by a natural
immune response (Kapel and Gamble, 2000; Kapel, 2001). None-
theless, T. nativa has been identified in 3.5% of Trichinella isolates
from wild boars from countries where it was circulating among
wild carnivores (www.iss.it/site/Trichinella/index.asp). Mixed
infections have been identified in regions where T. nativa lives
in sympatry with T. spiralis, T. britovi and Trichinella T6. By
multiplex PCR, parasites of this species display a band of 127 bp
from the ESV (Zarlenga et al., 1999) which is the same as Trichinella

T12 (see below); however, the two taxa can be easily distinguished
by sequencing the amplicon. Also, the 127 bp fragment from ESV is
common to most encapsulated sylvatic genotypes and differentia-
tion by multiplex PCR for this group of worms is predicated upon
multiple primer sets for each genotype. A secondary primer set has
yet to be developed for Trichinella T12 to delineate it from T. nativa.
One interesting biological peculiarity of this species is its high
resistance to freezing in muscles of carnivores (up to 5 years) (Dick
and Pozio, 2001). This biological character is lost, however, in
frozen muscles of swine and rodents (Kapel, 2000; Malakauskas
and Kapel, 2003), suggesting some level of host–parasite relation-
ship with respect to T. nativa and obligate carnivores.

4.1.3. Trichinella britovi

This species is most often found in wild carnivore mammals of
the families of Canidae, Felidae, Mustelidae, Ursidae, and Viverridae,
living in temperate regions of Europe, Western Asia, and Northern
and Western Africa (Pozio and Murrell, 2006). The northern
distribution boundary has been tentatively defined as the isotherms
�5 and �6 8C in January (Pozio and Zarlenga, 2005). In Europe, T.

britovi has been detected in 89%, 38% and 18% of Trichinella isolates
from carnivores, wild boars and domestic pigs, respectively (Pozio
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et al., 2009). Even if T. britovi can infect domestic and sylvatic swine,
survival of the larvae in striated muscles of these hosts rarely
exceeds 6–9 months which may explain the apparent lower
prevalence relative to T. spiralis. Similar to T. nativa, T. britovi can
survive in frozen muscles of carnivores but for shorter periods of
time (less than 1 year), and in frozen swine muscles only for few
weeks (Dick and Pozio, 2001; Pozio et al., 2006). Human infections
have resulted from the consumption of free-ranging and backyard
pigs, horse meat, and game meat. By multiplex PCR, parasites of this
species display a band at 127 bp derived from the ESV as well as a
second band at 253 bp from the ITS1 (Zarlenga et al., 1999). This
profile is identical to the one generated by Trichinella genotypes T8
and T9; however, the three taxa can be distinguished by additional
PCR analysis (see below) and by geographical origin, because they
are allopatric. Enzymatic amplification of single larvae has revealed
mixed infections in animals from regions where T. britovi lives in
sympatry with T. spiralis and T. nativa.

4.1.4. Trichinella murrelli

This species is the vicariant species of T. britovi in North America
since it circulates among carnivores in this temperate geographical
region only (Pozio and La Rosa, 2000). The main hosts are wild
carnivore mammals of the families of Canidae, Felidae, Procyoni-
dae and Ursidae. There is a single report in 1985 of T. murrelli in
horsemeat in France that was the source of a large human outbreak
with two deaths (Ancelle et al., 1988); however, it was later
determined that this was imported from Connecticut (USA). This
species does not develop in domestic and wild swine (Kapel and
Gamble, 2000; Kapel, 2001). By multiplex PCR, T. murrelli displays a
band at 127 bp from the ESV and a second band at 316 bp from the
ITS2 (Zarlenga et al., 1999). A mixed infection of T. murrelli and T.

spiralis was detected in a black bear from California (www.iss.it/
site/Trichinella/index.asp).

4.1.5. Trichinella nelsoni

This species has been detected in Eastern Africa from Kenya to
South Africa (Pozio et al., 1997b; Marucci et al., 2009). Trichinella

nelsoni infects predominantly wild carnivore mammals belonging
to the families Canidae, Felidae, Hyaenidae and Viverridae, but it
has been also detected in warthogs (Pozio and Murrell, 2006).
Human infections have been documented only rarely from the
consumption of warthog or bush pig meat with some deaths
(Pozio, 2007b). By multiplex PCR, parasites of this species display a
band at 127 bp derived from the ESV and a second band at 404 bp
from the ITS2 (Zarlenga et al., 1999). Genetic variants have been
detected among parasites originating from different geographical
regions (La Rosa and Pozio, 2000). A mixed infection containing T.

nelsoni and Trichinella T8 has been documented in a lion from the
Kruger National Park of South Africa (Marucci et al., 2009).

4.1.6. Trichinella T6

This freeze resistant genotype infects only wild carnivore
mammals belonging to the families of Canidae, Felidae, Mustelidae
and Ursidae, and circulates in USA and Canada quite frequently in
sympatry with T. nativa. Inasmuch as hybrid larvae between
Trichinella T6 and T. nativa have been detected in nature (La Rosa
et al., 2003a), the taxonomic status of Trichinella T6 remains
undefined. Human infections have been rarely documented for the
consumption of carnivore meat (Pozio and Murrell, 2006). By
multiplex PCR, parasites of this species display a band at 127 bp
from the ESV and a second band at 210 bp from the ITS1 (Zarlenga
et al., 1999).

4.1.7. Trichinella T8

This genotype is phylogenetically related to T. britovi with
which it interbreeds and produces fertile offspring. It has been
discovered only in lions and spotted hyaenas from the Kruger
National Park of South Africa and from the Etosha National Park in
Namibia (Pozio et al., 1994; Marucci et al., 2009). No human
infections have been documented. By multiplex PCR, parasites of
this species display a band of 127 bp from the ESV and a band of
253 bp from the ITS1 (Zarlenga et al., 1999), i.e. the same pattern
displayed by T. britovi; however, these two taxa can be
differentiated by a PCR based on a 21 bp deletion in the ITS2
sequence of Trichinella T8 (Pozio et al., 2005a).

4.1.8. Trichinella T9

This genotype is phylogenetically related to T. murrelli (Zarlenga
et al., 2006) with which it interbreeds and produces fertile
offspring (Pozio E., unpublished data). It has been found among
wild carnivores belonging to the Canides and Ursidae of Japan only
(Kanai et al., 2007). No human infections have been documented.
By multiplex PCR, parasites of this species display a band of 127 bp
from the ESV and a second band of 253 bp derived from the ITS1
(Zarlenga et al., 1999), i.e. the same pattern displayed by T. britovi;
however, these two taxa can be distinguished by PCR-RFLP based
on the COI mitochondrial DNA (Nagano et al., 1999).

4.1.9. Trichinella T12

This newly recognized genotype was identified in pumas (Puma

concolor) from Patagonia, Argentina. By multiplex PCR, parasites of
this taxon display a band of 127 bp of the ESV as T. nativa for
reasons described under T. nativa above; however, the two taxa can
be easily distinguished by sequencing this amplicon (Krivokapich
et al., 2008). Comparative analysis of DNA sequences from COI and
5S ISR differentiates Trichinella T12 from all the other recognized
Trichinella species or genotypes so far identified (Krivokapich et al.,
2008); however, no biological and epidemiological information is
available. Bootstrap data were equivocal in the relative positioning
of T. spiralis, T. nelsoni and Trichinella T12 from Patagonia (Fig. 1).
Nonetheless, establishment of the most probable phylogenetic
position of this genotype in the encapsulated clade can represent
an important step to our knowledge on the expansion and
biogeography of encapsulated species.

4.2. The non-encapsulated clade

Trichinella species belonging to this clade can be further
subdivided into two groups; those that circulate among mammals
and birds, and those that infect mammals and reptiles (Table 2).

4.2.1. Trichinella pseudospiralis

Trichinella pseudospiralis was first discovered in 1972. This non-
encapsulated species was considered an enigma for a decade since
only one isolate had been detected. Larvae are able to infect both
mammals and birds but do not induce a thick collagen capsule
around the nurse cell complex (Dick, 1983). Worldwide isolation of
these parasites from mammals and birds has permitted studies on
the global distribution of this specie and its host preference (Pozio
and Murrell, 2006). By multiplex PCR, T. pseudospiralis from
Eurasia, North America and Tasmania, display bands at 310, 340, or
360 bp from the ESV, respectively (Zarlenga et al., 1996, 1999; La
Rosa et al., 2001). Of 33 isolates identified so far at the ITRC, 14
originated from domestic and sylvatic swine, ten from carnivore
mammals, four from carnivore birds, three from synanthropic
rodents near farms harbouring T. pseudospiralis-infected pigs, one
from a carnivore marsupial from Tasmania, and one from a man
who acquired the infection from wild pig meat in Thailand
(www.iss.it/site/Trichinella/index.asp; Jongwutiwes et al., 1998).
Inasmuch as the numbers of different animals and birds examined
for Trichinella varies greatly, the natural cycle of this parasite and
any host preferences remain enigmas.
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4.2.2. Trichinella papuae

The circulation of Trichinella parasites (initially thought to be T.

spiralis) in New Guinea was first reported by Madsen in 1964
(Anonymous, 1964). This information became buried in the
literature until 1988, when non-encapsulated larvae of Trichinella

were discovered in ‘‘backyard pigs’’ from a remote region of Papua
New Guinea (PNG) (Owen et al., 2000). The combination of
molecular and biological data permitted classifying these parasites
as a new species (Pozio et al., 1999a). By multiplex PCR, parasites of
this species display a unique band of 240 bp derived from the ESV.
As with T. pseudospiralis, this amplified product shows sequence
heterogeneity among isolates originating from different regions of
PNG (Pozio et al., 2005b). So far, this species has been detected in
backyard pigs, wild pigs and farmed saltwater crocodiles in PNG. In
addition, T. papuae was identified in two wild pigs from Thailand
which were the sources of two human outbreaks (Khumjui et al.,
2008; www.iss.it/site/Trichinella/index.asp). A high level of infec-
tion has been documented in humans living in remote regions of
PNG (Owen et al., 2005). Muscle larvae from naturally-infected
wild pigs retained their infectivity up to nine days after being
slaughtered and left in a tropical environment (358 C, 79.0% of
relative humidity). This is consistent with the adaptability of this
parasite to extreme environmental conditions which in turn
favours its transmission to new hosts (Owen and Reid, 2007).

4.2.3. Trichinella zimbabwensis

In 1995, Trichinella larvae were detected in the muscles of
farmed crocodiles (Crocodylus niloticus) in Zimbabwe (Pozio et al.,
2002). This represented the first observation of a reptile species
naturally-infected with Trichinella and in poikilothermic animals.
Molecular, biochemical and biological studies demonstrated that
these parasites constituted a new species able to infect both
reptiles and mammals (Pozio et al., 2002, 2004, 2007c). In addition,
host-tissue morphology also showed that indeed, this species
belonged in the non-encapsulated clade. By multiplex PCR,
parasites of this species display a unique band of 264 bp from
the ESV. Sequence heterogeneity has been observed among
isolates originating from different regions of Zimbabwe and South
Africa (Pozio et al., 2007c; La Grange et al., 2009). As the number of
identified isolates has increased, our knowledge of the geogra-
phical range of T. zimbabwensis has been expanded to Ethiopia,
Mozambique, and to South Africa where it was detected also in a
lion (www.iss.it/site/Trichinella/index.asp). No human infections
have been reported to date.

5. Open issues

5.1. T. spiralis and T. britovi in carnivores

According to studies involving experimental infections (Kapel,
2000), the red fox is an excellent host for T. spiralis; however,
epidemiological data from Europe (Pozio et al., 2009), indicate that
the percentage of foxes infected with T. spiralis (10%) is much lower
than the percentage infected with T. britovi (90%). It is not yet
known if this discrepancy is related to the entozoic habitat of the
fox or its behaviour. If associated with the entozoic habitat, the
difference between experimental and natural infections could be
related to variations in survival times between the two Trichinella

species in fox muscle tissue. This issue was not addressed in the
studies conducted by Kapel (2000) because the experimental
infections were carried out over short duration times only.
Likewise, if the discrepancy is related to feeding behaviour,
experimental infections would not account for the natural
acquisition of T. spiralis. Inasmuch as the prevalence of T. spiralis

is very low (Rafter et al., 2005; Pozio, 2007b) or non-existent (e.g.
Great Britain, Sicily) (Pozio and La Rosa, 1998; Zimmer et al., 2008)
in fox populations where wild boar do not exist (e.g., Ireland,
Ulster), the fox may not be a good reservoir for T. spiralis in nature
even though it is an excellent experimental host. The data further
suggest that the natural reservoir of this parasite species, i.e. the
wild boar, may be required to propagate T. spiralis infections
among local populations of foxes.

5.2. Relationship between T. nativa and Trichinella T6

As reported above, T. nativa and Trichinella T6 have been found
in sympatry, i.e. in the same host above the January�4 8C isotherm
in North America. Natural hybrids have been identified also (La
Rosa et al., 2003a; Reichard et al., 2008). Breeding experiments
between T. nativa and Trichinella T6 produced F1 viable offspring in
both senses (male T. nativa x female T6, and female T. nativa x male
T6); however, only F1 larvae originating from male T. nativa x
female T6 were able to produce viable F2 offspring (La Rosa et al.,
2003a). As such, the evolution of these two taxa is perplexing given
they share the same hosts, T. nativa spans the Holarctic, and to date
Trichinella T6 has not been found in the Palearctic. Numerous
hypotheses have been advanced based upon constraints imposed
by the tree topology (Fig. 1). One advocates Trichinella T9 as a
peripheral isolate on the islands of Japan. If so, the divergence of T.

nativa and Trichinella T6 may have occurred during episodes of
allopatry in Beringia and in periglacial habitats south of the
Cordilleran and Laurentide glaciers resulting in a bifurcation of the
freeze-resistant genotype possibly as far west as the Rocky
Mountains (La Rosa et al., 2003a; Zarlenga et al., 2006). A second
hypothesis assumes that peripheral isolation played a role in
diversifying these two crown species where T. nativa may
represent an ancestral and persistent high-latitude population in
the Holarctic (Zarlenga et al., 2006). Although not constrained by
the current tree topology, a third hypothesis suggests that T. nativa

first evolved in the more frigid zones of the Palearctic and
Trichinella T6 appeared in the Nearctic only recently after biotic
expansion of T. nativa through Beringia. However, new freeze-
resistant, geographical isolates representing these genotypes will
be required to shed light on this issue.

5.3. What is the natural cycle for T. pseudospiralis?

Trichinella pseudospiralis infects both mammals and birds, and
has been detected inconsistently in less than 20 countries world-
wide (Pozio, 2007b). Its prevalence in examined animals is always
very low when compared to other Trichinella species circulating in
the same regions (www.iss.it/site/Trichinella/index.asp). To date,
collected data do not allow assignment of a natural host or host
group for this parasite. This is due in part to a bias in the types and
numbers of animals tested for Trichinella. Among the thousands of
animals examined each year for Trichinella, the number of birds as
well as the number of rodents and insectivores is less than a few
hundred. Inadvertently, this may be generating the very low number
of findings in birds. However, as the number of omnivorous birds
such as seagulls, crows and rocks increases in many parts of the
world, the opportunities to monitor for T. pseudospiralis infections
should increase as well. The continued use of molecular techniques
will allow more thorough investigations of the role of different
animal species in the natural cycle of this parasite.

5.4. Intraspecific population variation

Based upon microsatellite data from ESV of the lsu rRNA gene,
Zarlenga et al. (1996) were first to propose that the non-
encapsulated species T. pseudospiralis might best be envisioned
as a group of independently evolving genotypes. They found both
population differences as well as multiple alleles in the lsu rRNA
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gene. This was corroborated by La Rosa et al. (2001) and most
recently by Wu et al. (2007) who used ten isolates and nine
different genes to conclude that T. pseudospiralis from Australia, the
Nearctic and the Palearctic were indeed distinct. This laid the
ground work for more extensive studies of DNA microsatellites and
how they could assist in understanding Trichinella evolution. Since
those initial studies, intraspecific genetic variation has been
observed in the other non-encapsulated species as well (Pozio
et al., 2005b; Pozio et al., 2007c); however, this variation was not
relegated to the non-encapsulated clade. Genetic variation was
observed in geographical isolates of T. nelsoni as early as 2000 (La
Rosa and Pozio, 2000) and by single sequence conformational
polymorphism in 2004 (Gasser et al., 2004). Most recently, using
microsatellite markers, Rosenthal et al. (2008) found that variation
exists within virtually all species and genotypes examined. A study
of nine microsatellite loci and sequencing one-fifth of the
mitochondrial genome of T. spiralis from America, Asia, Europe
and North Africa showed that parasites from this species are
remarkably uniform worldwide except for T. spiralis in Asia, where
swine were first domesticated and genetic variability in T. spiralis is
greater than that found in the West (Rosenthal et al., 2008). These
results support the hypothesis that European lineages of T. spiralis

originated several thousands of years ago, approximating the time
when pigs were first domesticated. These population studies also
corroborated the hypothesis that extant encapsulated Trichinella

likely had origins in Asia and that European travellers or those
travelling through Western Europe inadvertently introduced T.

spiralis to the Americas via infected pigs and/or rats (Rosenthal
et al., 2008).

6. Conclusions

In recent years a well corroborated hypothesis for relationships
among the 12 recognized genotypes and species of Trichinella has
been generated. This hypothesis supports the taxonomic scheme
that has evolved over the past 25–35 years predicated on
numerous biological and biochemical characters that have been
amassed by the ITRC. This working tree now provides a foundation
to explore the fine scale history of parasite populations using a
deeper historical background. Clearly, as new isolates are
identified, they should help expand and clarify our understanding
of the diversity and evolutionary forces which been active in recent
evolutionary time.
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